A commutative algebra approach to linear codes
نویسندگان
چکیده
منابع مشابه
Commutative Algebra Notes Introduction to Commutative Algebra Atiyah & Macdonald
and we call A the zero ring denoted by 0. A ring homomorphism is a mapping f of a ring A into a ring B such that for all x, y ∈ A, f(x + y) = f(x) + f(y), f(xy) = f(x)f(y) and f(1) = 1. The usual properties of ring homomorphisms can be proven from these facts. A subset S of A is a subring of A if S is closed under addition and multiplication and contains the identity element of A. The identity ...
متن کاملIntroduction to commutative algebra
for making many comments and corrections concerning these notes. All rings are commutative and contain multiplicative identity, moreover we will always insist that ring homomorphisms respect the multiplicative identity element. Local rings are assumed to be Noetherian. Additionally, all modules are unitary modules. We have made an attempt to be consistent with our notation: (1) Rings are often ...
متن کاملCommutative Algebra
Introduction 5 0.1. What is Commutative Algebra? 5 0.2. Why study Commutative Algebra? 5 0.3. Acknowledgments 7 1. Commutative rings 7 1.1. Fixing terminology 7 1.2. Adjoining elements 10 1.3. Ideals and quotient rings 11 1.4. The monoid of ideals of R 14 1.5. Pushing and pulling ideals 15 1.6. Maximal and prime ideals 16 1.7. Products of rings 17 1.8. A cheatsheet 19 2. Galois Connections 20 2...
متن کاملBlocking Linear Algebra Codes for Memory Hierarchies
Because computation speed and memory size are both increasing, the latency of memory, in basic machine cycles, is also increasing. As a result, recent compiler research has focused on reducing the e ective latency by restructuring programs to take more advantage of high-speed intermediate memory (or cache, as it is usually called). The problem is that many real-world programs are non-trivial to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2009
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2008.09.037